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Executive Summary 

This deliverable includes the outcomes of the activities carried out in the framework of the 

Task 5.3 – Security Risk Assessment Algorithms for Decision Support within WP5 of 7SHIELD 

project. The main objective of this task is to design and develop a module, called Crisis 

Classification (CRCL), that encompasses advanced machine learning processes so as to 

provide real-time assessments of the severity level of a crisis in the Critical Infrastructures 

(CIs) and, particularly, in the Satellite Ground Segments (SGS).  

The Cyber-Physical systems (CPS) have been considered as a core of Cis, therefore, their 

protection from complex physical and cyber crisis events is a major challenge. The CRCL 

aims to dynamically assess the severity level of complex events and updates the Situational 

Picture (SP) of a particular critical ground segment, supporting crisis operators to decision-

making processes. 

Initially, an overview of the finalized user requirements is presented which, along with the 

key result objectives, are used as a guideline for the implemented solutions. Then, an 

overview of the machine learning practices for Risk Assessment in Critical Infrastructures is 

presented. A detailed presentation of the proposed framework that was developed and 

deployed follows. The framework relies on the utilisation of Machine Learning approaches 

that enable to estimate of the severity level of an attack (physical, cyber or combined). To 

achieve this, the preliminary step of the creation of adequate annotated datasets is required 

to train the models. Then, the interconnections between CRCL, the other 7SHIELD modules 

and the 7SHIELD platform as well as the benefits are presented. The evaluation 

experiments that were carried out throughout the development process and the produced 

results, both quantity and quality wise, are also reported here in order to explore the 

applicability of the final product. The performance of the machine learning algorithms has 

been evaluated in terms of their accuracy, F1 score, recall and precision.  

   



 

 

D5.3 Security Risk Assessment Algorithms Page 5 / 48 

 

Table of Contents 

Executive Summary .............................................................................................................. 4 
1. Introduction ................................................................................................................ 9 

1.1. Scope of this deliverable ...................................................................................................... 9 
1.2. User requirements for risk assessment ............................................................................... 10 
1.3. Reference to other activities and documents ..................................................................... 11 
1.4. Deliverable structure ........................................................................................................... 11 

2. Overview of Risk Assessment in Critical Infrastructures ............................................ 13 
2.1. Machine Learning in Disaster Management Cycle ............................................................. 14 

3. 7SHIELD Security Risk Assessment Algorithms ........................................................ 16 
3.1. Annotation Tool .................................................................................................................. 16 

3.1.1. Architectural Schema .................................................................................................................. 16 
3.1.2. Back-End Process ....................................................................................................................... 17 
3.1.3. Front-End User Interfaces ........................................................................................................... 18 

3.2. Crisis Classification Module ................................................................................................ 20 
3.2.1. High Level Architectural Schema ................................................................................................ 20 
3.2.2. Information Fusion Module ........................................................................................................ 21 
3.2.3. Decision Fusion Module ............................................................................................................. 26 
3.2.4. Deployment and Interaction with Other Modules ...................................................................... 27 

4. Experimental Evaluations ......................................................................................... 28 
4.1. End-User’s Feedback for the Annotation Process .............................................................. 28 
4.2. Crisis Classification Experimental Results ........................................................................... 29 

4.2.1. Experimental Results Over the NOA Pilot .................................................................................. 30 
4.2.2. Experimental Results Over the DEIMOS Pilot ............................................................................ 34 
4.2.3. Experimental Results Over the FMI Pilot .................................................................................... 38 
4.2.4. Experimental Results Over the SPACEAPPS Pilot ...................................................................... 40 
4.2.5. Experimental Results Over the SERCO Pilot .............................................................................. 42 

5. Conclusions and Future Outlook .............................................................................. 45 
6. References ................................................................................................................ 46 
 
 
  



 

 

D5.3 Security Risk Assessment Algorithms Page 6 / 48 

 

List of Figures 

Figure 1-1 – High Level Logical Architecture of 7SHIELD .................................................... 9 
Figure 2-1 - Machine Learning approaches in relation to Disaster Management Cycle phases
 ........................................................................................................................................... 14 
Figure 3-1 – A High Level Architecture of the Annotation Tool ......................................... 16 
Figure 3-2 - Example of an annotated event stored into MongoDB ................................. 17 
Figure 3-3 - Overview of the Annotation Tool front and back end .................................... 18 
Figure 3-4 - Risk Matrix used to calculate severity level ..................................................... 20 
Figure 3-5 - High level architectural schema of Crisis Classification .................................. 21 
Figure 3-6 - General process of training and testing a ML algorithm [11] ......................... 22 
Figure 3-7 - Confusion Matrix example .............................................................................. 25 
Figure 3-8 – Interaction between Information Fusion and Decision Fusion modules ........ 27 
Figure 4-1 - Cyber scenarios distribution per attack type and severity level ..................... 28 
Figure 4-2 - Physical scenarios distribution per detected item type and severity level ..... 29 
Figure 4-3 – SVM Confusion Matrix over NOA’s physical dataset ..................................... 32 
Figure 4-4 – Confusion Matrices for classifiers (a) LR, (b) XGBoost, (c) DT and (d) RF over 
NOA physical attack scenarios ........................................................................................... 32 
Figure 4-5 – SVM Confusion Matrix over NOA’s cyber dataset ......................................... 33 
Figure 4-6 – Confusion Matrices for classifiers (a) RF, (b) LR, (c) DT and (d) XGBoost over 
NOA cyber-attack scenarios ............................................................................................... 34 
Figure 4-7 – Decision Tree Confusion Matrix over DEIMOS’s physical dataset ................. 35 
Figure 4-8 – Confusion Matrices for classifiers (a) LR, (b) RF, (c) XGBoost and (d) SVM over 
DEIMOS physical attack scenarios ..................................................................................... 36 
Figure 4-9- Decision Tree Confusion Matrix over DEIMOS’s cyber dataset ...................... 37 
Figure 4-10 – Confusion Matrices for classifiers (a) LR, (b) RF, (c) XGBoost and (d) SVM over 
DEIMOS cyber-attack scenarios ......................................................................................... 38 
Figure 4-11- LR Confusion Matrix over FMI’s physical dataset .......................................... 39 
Figure 4-12 – Confusion Matrices for classifiers (a) Random Forest, (b) XGBoost, (c) SVM 
and (d) DT over FMI physical attack scenarios ................................................................... 40 
Figure 4-13- Linear Regression Confusion Matrix over SpaceAPPs’ cyber dataset ........... 41 
Figure 4-14 – Confusion Matrices for classifiers (a) DT, (b) RF, (c) SVM and (d) XGBoost over 
SpaceAPPS cyber-attack scenarios .................................................................................... 42 
Figure 4-15- Linear Regression Confusion Matrix over Serco’s cyber dataset ................... 43 
Figure 4-16 – Confusion Matrices for classifiers (a) DT, (b) RF, (c) SVM and (d) XGBoost over 
Serco cyber-attack scenarios .............................................................................................. 44 
 

List of Tables 

Table 1-1 - User Requirements related to KR13 ................................................................. 10 
Table 3-1 – Event category per pilot use case ................................................................... 19 
Table 4-1– Performance of the ML Classifiers over NOA’s physical dataset ..................... 30 
Table 4-2– Performance of the ML Classifiers over NOA’s cyber dataset .......................... 33 
Table 4-3– Performance of the ML Classifiers over DEIMOS’s physical dataset ................ 35 
Table 4-4– Performance of the ML Classifiers over DEIMOS’s cyber dataset .................... 37 



 

 

D5.3 Security Risk Assessment Algorithms Page 7 / 48 

 

Table 4-5– Performance of the ML Classifiers over FMI’s physical attack dataset ............. 39 
Table 4-6– Performance of the ML Classifiers over SpaceAPPS’s cyber-attack dataset .... 41 
Table 4-7– Performance of the ML Classifiers over Serco’s cyber-attack dataset .............. 43 
 
 

  



 

 

D5.3 Security Risk Assessment Algorithms Page 8 / 48 

 

Definitions and acronyms 

CI Critical Infrastructure 
CIP Critical Infrastructure Protection 
CEP Complex Event Processing 
C/P Cyber/Physical 
CRCL Crisis Classification 
C3 Command Control and Coordination 
DBMS Data Base Management System 
DoA Description of Action 
DTC Decision Tree Classifier 
EC European Commission 
EU European Union 
GA Grant Agreement 
IDMEF Intrusion Detection Message Exchange Format 
JSON JavaScript Object Notation 
LR Linear Regression 
ML  Machine Learning 
PC Project Coordinator 
RDBMS Relational Data Base Management System 
RF Random Forest 
SGS  Satellite Ground Station 
SGSA Satellite Ground Segment Asset 
SVM Support Vector Machine 
UAF Unified Alert Format 
UI User Interface 
WP Work Package 
XGBoost Extreme Gradient Boosting 



 

 

D5.3 Security Risk Assessment Algorithms Page 9 / 48 

 

1. Introduction 

1.1. Scope of this deliverable 

 
Figure 1-1 – High Level Logical Architecture of 7SHIELD 

The main objective of 7SHIELD is to provide to the European Ground Segment facilities a 

holistic framework enabling to confront complex cyber and physical threats by covering all 

the macro stages of crisis management, namely pre-crisis, crisis and post-crises phases. To 

achieve this objective, a multi-layer architecture (Figure 1-1) has been developed which 

encompasses detection technologies to raise alerts from captured physical and/or cyber-

attacks (Detection Layer) and correlation and fusion techniques that generate malicious 

events relied on those alerts (Situational Picture Layer). In this layer, the Situational Picture 

of the Ground Segments is generated and updated upon the crisis events. The severity 

level assessment of those crisis events is provided by the Crisis Classification (CRCL) module 

and further enhances dynamically (in real-time) the Situational Picture which is provided to 

the crisis managers and other stakeholders in the Command, Control and Coordination (C3) 

System. The Crisis Classification module is laid in the Service Layer of the 7SHIELD Logical 

architectural schema. The decision support services in this layer are responsible for 

prevention, management and mitigation activities used by the experts to tackle threats 

associated with cyber-physical attacks in the Satellite Ground Segment domain. 

The scope of this deliverable is to focus on the detailed description of the Crisis 

Classification module in terms of its architecture, functionalities and interactions with other 

7SHIELD modules. This deliverable covers the outcomes of the Task 5.3 Security Risk 

Assessment Algorithms for Decision Support which aims to design and develop a module 

enhancing the decision-making processes, by the real-time assess the severity of an 
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ongoing physical and/or cyber-attack in critical satellite and ground segments. This task is 

mapped to the Key Result KR13: Crisis classification module. 

1.2. User requirements for risk assessment 

Following the submission of the 1st and the 2nd round of the elicitation of the End User 

Requirements (URs) report the following requirements were examined regarding their 

relevance to KR13 in the context of the Task 5.3. Those are presented in Table 1-1.  

ID Type Priority Description AC KR 

FR_SW_10 Functional ESSENTIAL 7SHIELD must produce alerts 
based on crisis level classification 
and with indicator of crisis (e.g., 
red, orange, yellow colour). 

AC_041 KR13, 
KR20 

FR_SCE_10 Functional OPTIONAL 7SHIELD could make decision of 
criticality through object 
recognition and operate 
autonomously in case of critical 
incident. 

- KR13 

NFR_PERF_18 Non-
Functional 

ESSENTIAL Escalation of incident (time for 
operator to create incident 
notification and alert competent 
authorities) must be completed 
in under 3 minutes. 

AC_060 KR11, 
KR13, 
KR14 

NFR_PERF_19 Non-
Functional 

ESSENTIAL Percentage of alerts 
automatically linked to 
recommendations on minimizing 
impact propagation and 
supporting decisions must be at 
least 80%. 

AC_061 KR11, 
KR13 

Table 1-1 - User Requirements related to KR13 

The essential functional requirement FR_SW_10 states that “7SHIELD must produce alerts 

based on crisis level classification and with indicator of crisis (e.g., red, orange, yellow 

colour)” which is aligned with the main objective of the KR13 thus, it was recognized as the 

main UR which will be fully supported by KR13. Its description is straight-forward setting 

the ultimate goal of the CRCL module which is to provide real-time assessments of the 

severity of a crisis generated by a physical and/or cyber-attack in critical satellite and ground 

segments by fusing and analysing multimodal information and data.  

The optional requirement FR_SCE_10 states that “7SHIELD could make decision of 

criticality through object recognition and operate autonomously in case of critical incident” 

which is partially covered by KR13 in the sense that the CRCL module can provide 

assessments concerning the criticality of an ongoing event by the analysis of the detected 

and recognised objects. The Situational Picture can be updated automatically by CRCL and 
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the Emergency Response Plans will be activated enabling the operators to respond and 

mitigate a critical incident.   

The analysis of the received information from the tools of the Situational Picture layer is a 

straightforward process and longs some seconds. Additionally, every time where the 

Situational Picture is generated or updated, by including new malicious events, the CRCL 

assesses the severity level of the crisis in order to raise the awareness of the operators and 

crisis managers to activate the necessary emergency response plans. Hence, the non-

functional essential requirements, namely the NFR_PERF_18 and NFR_PERF_19 will be 

covered. 

1.3. Reference to other activities and documents 

This deliverable D5.3 has direct or indirect interdependences with other WP and 

deliverables within the project: 

• In the deliverables D2.2 Consolidation of Stakeholder Requirements and D2.4 Use 

cases and requirements v2), released at M6 and M16 respectively, in which the 

definition and elicitation of the end-users’ requirements of the 7SHIELD system have 

been carried out. 

• In the deliverables D4.2 - 7SHIELD Combined Physical and Cyber Threat detection 

and D6.2 – System integration and interoperability v1 (1st prototype), released at 

M9 and M10 respectively, the Unified Alert Format (UAF) messages and the 

messages to be exchanged between modules in the 7SHIELD ecosystem have been 

described. Part of the messages from the SPGU module is consumed and analysed 

by the CRCL module. Also, in those deliverables, the messages that will be 

published by CRCL have been described.   

• The detections and correlations that are carried out from the modules of WP4 and 

affect the situational picture have direct interaction with the operation of the CRCL 

module.   

• The provided solution within this deliverable will be implemented and integrated 

into the 7SHIELD platform in the context of the WP6 (System Integration). 

Furthermore, it will be tested and evaluated in the various Pilot Use Cases in the 

framework of WP7 (Pilot implementation, evaluation, and Training). 

• The outcomes of the T5.3 will contribute, through scientific and research 

publications, to the dissemination and communication activities of the 7SHIELD 

project (WP8). 

1.4. Deliverable structure 

This deliverable consists of the following sections: 
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• In Section 1, the scope of the deliverable along with a mention to the user require-

ments and needs that this task (T5.3) should meet and references to other activities 

and documents are presented. 

• In Section 2, a brief overview of the machine learning techniques applied in the Risk 

Assessment and the Disaster/Crisis Management is illustrated.  

• Section 3 is dedicated to the presentation of the Crisis Classification module includ-

ing its architecture, the design, development and evaluation processes. Addition-

ally, the accessory tool, namely the Annotation Tool, which aims to create annotated 

datasets employing the user's experience and knowledge is thoroughly introduced. 

• In Section 4 the experimental results and evaluations that have already carried out 

in order to estimate the performance of the Crisis Classification module are exhib-

ited thoroughly.  

• In Section 5, the main outcomes and conclusions of this work are drawn along with 

thoughts for future extensions of this module. 
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2. Overview of Risk Assessment in Critical Infrastructures 

This section aims to describe the basic concepts behind the Risk Assessment processes in 

Critical Infrastructures (CI) relied on the employment of advanced Machine Learning 

approach. The rise of effective Machine Learning methodologies for the prevention, 

prediction and detection of extreme hazardous events generated by natural, or human-

made (physical or cyber) sources, has started to contribute to the strengthening of our 

societies' resilience in various sectors and in the Critical Infrastructure Protection (CIP). 

CIs can be designated as the physical structures, facilities, networks and other assets which 

provide services that are essential to the social and economic functioning of a community 

or society [1]. Under the umbrella term Critical Infrastructure, resources from various sectors 

are encompassed that are necessary for the operation of societies, such as energy 

capacities, information and communication technologies, utility services, water facilities, 

transport, health care, public administration premises and services, as well as services and 

infrastructures of the private sector [2]. Therefore, their functional continuity is required to 

ensure the security of a given nation, its economy, and the public’s health and/or safety. 

Conversely, their disruption in operation or destruction could cause long-term harmful 

consequences for the basic values of the society, cascading effects on other interdependent 

systems resulting in catastrophic results. 

Nowadays, the crisis panorama has changed and diversify increasingly from “traditional” 

crises generated by natural hazards to technology-driven crises generated by cyber-attacks, 

or a combination of them ([3], [4]). The unexpectedly large scale of the extreme natural 

events in terms of their severity and frequency, the trans-boundary and cross-sectoral 

nature of new or unprecedented crises, compose a challenging and changing landscape in 

disaster and risk management [5]. In Global Assessment Report on Disaster Risk Reduction 

2019, has been underlined the need to move beyond the conventional definition for the 

disaster risk, re-examine and re-assess the risk, by taking into consideration the pluralistic 

nature of it: in multiple dimensions, at multiple scales and with multiple impacts [6]. 

Furthermore, the advances of new technologies, from one side intensifies the potential 

threats and attacks and from the other, provides empowered solutions to address them and 

strengthen the resilience in human societies and CIs. Recent technological innovations like 

IoT, 5G, unmanned aircraft vehicles, and artificial intelligence have brought immense 

benefits and contributed further efficiencies to CI operations. However, they have posed 

serious threats facilitating the malicious actors interested in disrupting CI operations. 

Particularly, in the CIs which are becoming increasingly complex, automated, and 

interconnected, thereby new vulnerabilities have been introduced exposing them to 

malicious physical activities ([3], [4], [7]). Reducing the vulnerabilities and improving 

resilience of CIs have become a priority for the authorities around the globe in order to 

enhance the CIs protection and their operational continuity.  
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In CPS, physical security is very often disregarded as the main attention is focused on 

mitigation actions and security countermeasures oriented to response to cyber-attacks [8]. 

However, in the last decade, physical security has been evolved to be more challenging, 

compared to previous decades, as there are more sensitive data storages and devices 

available (like USB drives, laptops, smartphones, tablets, etc.) that are vulnerable to physical 

threats [9]. Therefore, physical security in CIs should go beyond controlling the access of 

authorized personnel to the premises and adopt into the security systems innovative 

surveillance solutions that provide recognition and monitoring of human activities inside 

and outside critical areas [8].  

2.1. Machine Learning in Disaster Management Cycle 

Descriptive Machine Learning methods focus on the Response and Recovery phases of the 

Disaster Management Cycle while the Predictive Machine Learning methods concentrate 

to provide forecasting assessments of a natural disaster, enhancing the preparedness and 

mitigation processes of the Disaster Management Cycle (Figure 2-1) [17]. 

 

 
Figure 2-1 - Machine Learning approaches in relation to Disaster Management Cycle phases 

Although the application of Machine Learning methodologies to tackle specific problem 

areas in disaster risk management dates back to a recent couple of decades, significant 

challenges still need to be addressed. Machine Learning methods have penetrated in a 

descriptive and/or predictive manner in all the phases of disaster/crisis management, 

contributing in various ways to the assessment of the hazard, exposure and vulnerability 

from natural and human-made disasters (([17], [18], [19], [20]). 

Hence, one of the main challenges concerns the lack of required training data which limits 

the utilization of the machine learning algorithms to be trained in order for the latter to be 
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able to predict or assess the risk of a crisis event. In the field of disaster/crisis management, 

the extreme events are rare, so the collection of reliable data during such events is often 

extremely difficult. Furthermore, the rapid increment in the amount of heterogeneous 

collected data does not necessarily imply that this problem will be repeal in the future ([11], 

[16]-[20]). As researchers pointed out more efforts for data collection will be required 

simultaneously with the establishment of data standardization protocols in order to enhance 

the collaboration, knowledge sharing and interoperability among different organizations, 

networked global data systems and stakeholders ([16]-[20]).  

Getting motivated by this gap, the proposed annotation tool (Section 3.1) aims to involve 

the experts in the Satellite ground segments domain, by mapping their experience and 

knowledge into the characterization of hypothetical extreme physical (natural or human-

made) events and cyber-attacks in terms of their severity and impact to the CI. 

In Emergency situations, the estimation of a severity level of an involving crisis timely and 

seamlessly is crucial for the operators to efficiently response and take the appropriate 

countermeasures. Hence, recently, the utilisation of powerful machine learning techniques 

for strengthen the trackability and monitoring extreme natural hazardous events have been 

applied. For example, in [12] a multi-Layer Fusion framework, for Real-Time Fire Severity 

Assessment, based on knowledge extracted from the analysis of Fire Multimedia Incidents 

has presented. Recently, the analysis of remote sensing data from satellite images and GIS 

based data along with the utilisation of advanced machine learning algorithms can 

contribute to the flood mapping and monitoring of the flood hazard and risk in a specific 

region of interest [15]. Additionally, in [13] authors proposed an open-source holistic 

framework encompasses technological achievements that enables first responders and 

authorities to manage efficiently the pre-emergency phases of a hazardous natural event 

focusing on floods, wildfires and heatwaves relied on rule-based approach. In [14] an 

extension of it has been proposed where a unified multi-layer framework that encapsulates 

machine learning techniques in the risk assessment process. The aim was the analysis and 

fusion of dynamically heterogeneous information obtained from the field by covering pre-

emergency and emergency phases of a crisis. 

Relied on the aforementioned approach, in [16] is proposed a framework that enables to 

identify potential human-made threats, generated by using physical means. These physical 

malicious activities can be detected by heterogeneous sources (CCTVs, UAVs, etc.) and the 

live streaming analysis based on the advanced machine learning techniques can provide 

useful information to early warning crisis managers and operators to respond and mitigate 

the potential attack. In Section 3 a detailed description of this framework is provided.  
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3. 7SHIELD Security Risk Assessment Algorithms  

In this section, the proposed framework which estimates the level of severity during physical 

threats ([16]) is described and extended in order to cover all the aspects of the 7SHIELD 

project in terms of the potential threats, namely physical, cyber and complex events. Firstly, 

a description of the adequate Annotation Tool is presented. 

3.1. Annotation Tool 

3.1.1. Architectural Schema 

The Annotation Tool is a web application that its main purpose is to enable the creation of 

a machine learning training dataset, representing hypothetical attack scenarios, the 

potential consequences and the likelihood of them to take place in the 7SHIELD premises. 

Since the 7SHIELD pilot sites are unique, there are no public annotated datasets that are 

able to represent the current problem, hence, we decided to create custom ones, tailored 

to fit our needs.  

Another focus for the Annotation Tool was to be as easy and fast to use as possible. The 

larger the annotated dataset, the best the results after the training procedure of the 

machine learning modules would be. A web application can be used in almost any device, 

as long as it has access to a web browser and an active network connection, thus there is 

no need for installation. By ensuring ease of accessibility and a clean, easy to use UI, the 

end user has the ability to annotate larger quantities of hypothetical scenarios, faster and 

more efficient. The Annotation Tool consists of several parts as illustrated in the following 

figure (Figure 3-1). The Scenario Builder is responsible for the creation of random generated 

attack scenarios. Those scenarios are then stored into MongoDB, an online database. They 

can then be retrieved by the Scenario Evaluator, where the user can annotate them using 

the web application UI. The annotated scenario is then stored again in MongoDB. 

 
Figure 3-1 – A High Level Architecture of the Annotation Tool  
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3.1.2. Back-End Process 

In order to create the random hypothetical scenarios, Annotation Tool uses a Python script 

that is able to mix and match hand-picked parameters, specific for each pilot site and attack 

type. When each type of information necessary for the definition of the scenario is 

generated, it is stored in a JSON-like format in MongoDB. Each scenario has the fields that 

are needed to describe the event taking place, such as the location and if some people or 

objects were detected. It also has some empty fields that are intended to get the 

information the user provides, after the characterization of the scenario takes place, such 

as the likelihood and the potential consequences. 

 
Figure 3-2 - Example of an annotated event stored into MongoDB 

Annotation Tool also has a build in Login system that enables the monitoring of the users 

that have access and can characterize the hypothetical events. In order for someone to log 

in and use the Tool, correct input of the credentials (username, password) is required. 

The main framework used to create this web application is Flask1. Flask is using python and 

is implemented on Werkzeug2 and Jinja3. The advantages of using Flask web framework 

are many, including: 

• Built-in development server and a fast debugger provided 

• Lightweight 

• Secure cookies are supported 

• Templating using Jinja2 

• Request dispatching using REST 

• Support for unit testing built-in 

 
1 https://palletsprojects.com/p/flask/ 
2 https://palletsprojects.com/p/werkzeug/ 
3 https://palletsprojects.com/p/jinja/ 
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3.1.3. Front-End User Interfaces 

The front-end of the Annotation tool was built using Python, HTML, Bootstrap and 

Typescript. Bootstrap is a front-end open-source toolkit, featuring a collection of HTML, 

CSS and JavaScript tools for creating and building web pages and web applications. 

Typescript offers all of JavaScript’s features and an additional layer, Typescript’s type 

system, lowering the chance of bugs. 

 
Figure 3-3 - Overview of the Annotation Tool front and back end 

A web application is a collection of static and dynamic web pages. A static web page is one 

that does not change when a site visitor requests it: The web server sends the page to the 

requesting web browser without modifying it. A dynamic web page on the other hand is 

modified by the server before it is sent to the requesting browser. The changing nature of 

the page is why it’s called dynamic. Annotation Tool’s front-end consists of the following 

web pages: 

a) Sign in page: A welcome page where the end-user can input the credentials 

(“Username” and "Password”) required in order to get access to the main interface 

(Figure 3-3 (a)). Wrong or missing credentials will result in an error popup message, 

since the user could not get authenticated. 

b) Pilot/Event category selection page: A page where the end-user can use drop-down 

menus in order to select the pilot site and the event category of the hypothetical 
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scenarios that will be generated for annotation (Figure 3-3 (b)). According to the 

Pilot Use Case scenarios, the available choices are the following:  

Pilot Event Category 

FMI Physical 

SPACEAPPS Cyber 

SERCO Cyber 

DEIMOS Physical or Cyber 

NOA Physical or Cyber 

Table 3-1 – Event category per pilot use case 

c) Main interface – Annotation page: This is the page where the random generated 

scenarios can be characterized by the end-users (Figure 3-3 (c)). On the left side of 

the page, under the “Scenario” tag there are values that represent the hypothetical 

attack scenario. Those values consist of:  

1. “Detected Items”, where all the possible threats (e.g. Unauthorized Person, 

Car, Motorcycle, etc.) and their population are listed 

2. “Location”, where the location of the “Items” detected or the asset that is 

targeted is declared 

3. “Activity”, for the activity of the person(s) detected 

4. “Event Time” specifies the time when the event is taking place 

On the top right of the page, a popup “info” button is present, providing the user 

useful information on how to use the Tool. Bellow it, a multiple selection box 

enables the user to characterize the scenario by choosing one out of five possible 

values for each one of the fields “Potential Consequences” and “Likelihood”. The 

two later choices are used for the calculation of the overall “Severity Level” of the 

event. 

In order to get a final JSON file with the annotated scenario like the one in (Figure 3-3 (d)), 

“Severity Level” must be calculated. This is an automated back-end procedure, where a 

custom risk matrix is used, adjusted to the needs of 7SHIELD. 
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Figure 3-4 - Risk Matrix used to calculate severity level 

3.2. Crisis Classification Module  

3.2.1. High Level Architectural Schema  

The accurate and timely estimation of the severity of the crisis is an ultimate goal for 

authorities to effectively respond and handle an ongoing crisis. In the 7SHIELD ecosystem 

the aim of the Crisis Classification module is to encompass methodologies for multi-level 

crisis assessment relying on multimodal information and data fusion. Particularly, it will 

employ existing machine learning approaches, modified specifically for the needs of 

7SHIELD, in order to assess and classify the severity of ongoing crisis events. 

The main focus of the design and development of Crisis Classification module is to enhance 

the decision-making processes, by real-time assessing the severity level of an ongoing 

physical and/or cyber-attack in critical space systems, ground segments and satellite data 

assets. The module will incorporate multi-level fusion techniques so as to analyse multiple 

types of data, classify crisis events utilising machine learning techniques and extend the 

decision support processes of the responders. Severity level will be estimated by combining 

the available sources of data and the outcomes of the detection technologies for physical 

and cyber threats. 
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Figure 3-5 - High level architectural schema of Crisis Classification 

The Crisis Classification module consists of two main components, namely the Information 

Fusion Module and the Decision Fusion Module (Figure 3-5). The former consumes 

information from the Situational Picture of a Ground Segment regarding the real-time 

conditions for a malicious event (critical). This component estimates the severity level of the 

crisis event that is in progress by using machine learning techniques and proceeds it to the 

Decision Fusion module. The goal of this component is to enhance the severity level by 

combining information from the assets, their criticality and vulnerabilities in a rule-based 

approach. The final estimation of the severity/risk level of a particular crisis event updates 

the Situational Picture by sending the appropriate message to the SPGU module. Also, the 

Knowledge Base and the database which stores the historical Situational Picture events will 

be updated accordingly as it is illustrated in the above figure.  

It should be noted that the alerts that are generated by the detectors, physical and cyber 

ones, in the Detection layer, are correlated via physical, cyber and combined correlators to 

produce more sophisticated events. Then, these correlated events are able to generate or 

update the Situational Picture concerning the status of the Ground Segment due to 

malicious or abnormal events (Figure 3-5). Hence, the Crisis Classification module will be 

triggered automatically every time that a new situation emerges by SPGU module. The 

severity level will be updated and published to SPGU. The final receiver of this process is 

the Command, Control and Coordination (C3) user interface where the information from 

the severity level will be visualised and raise awareness among the operators. 

3.2.2.  Information Fusion Module  

The Information Fusion module consists of the 1st step of the analysis inside the CRCL 

module. It relies on the utilisation of various Machine Learning approaches for risk 

assessment. The aim is to fuse information from various detected items and events that 
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have been identified by detectors and correlated by the 7SHIELD correlators in order to 

assess the severity level of the destructive events. The exploitation of the capabilities of 

Machine Learning approaches to “learn” from historical data and fit the behaviour of the 

models according to the current situation permits the develop of a module that will be 

reliable and robust to assess the severity level of a crisis in real-time.  

The training of the ML models can be performed by the usage of an annotated dataset. In 

our case, the target variable is the severity levels (Low, Moderate, High, Extreme) and the 

classification of each event in those categories can be done based on pre-defined features 

extracted from the events. After the training process, each ML model will be evaluated over 

its performance to classify the "unknown" data. In our case, new crisis events appear and 

the trained models classify them in terms of their severity. In the end, the best performance 

ml model will be chosen to classify new physical or cyber events. In the following sections 

the aforementioned processes will be described in more details. 

3.2.2.1. Training process 

Training a machine learning (ML) model is a process in which a machine learning algorithm 

is fed with training data from which it can learn. That is the primary step in machine learning 

and results in a model that can be then validated, tested and deployed (Figure 3-6). The 

performance of the model during training will determine how well it will work when it is 

eventually put into an application for the end-users.  

 
Figure 3-6 - General process of training and testing a ML algorithm [11] 

Due to the nature of the problem that 7SHIELD presents, the uniqueness of each space 

ground segment and the specific requirements, there is no suitable open-source dataset 

that can efficiently be used to train the machine learning algorithms of the Crisis 

Classification module. In order to overcome that problem, we used Annotation Tool to 

effectively create our own annotated dataset. With the help of experts in the safety of each 
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ground segment, we managed to collect a total of 1088 cyber and 762 physical 

hypothetical attack scenarios annotated. 

The training process of the Information Fusion module includes a total of five different 

machine learning methodologies. Those are:  

• Linear Regression (Ridge Classifier) 

One of the fundamental supervised machine-learning algorithms due to its 

relative simplicity and well-known properties. Ridge Regression is a method of 

estimating the coefficients of multiple-regression models in scenarios where 

linearly independent variables are highly correlated. 

• Support-Vector Machine (SVM) 

Supervised learning model with associated learning algorithms that analyze data 

for classification and regression analysis. SVMs are one of the most robust 

prediction methods. 

• Random Forest Classifier 

Classifier that contains a number of decision trees on various subsets of the given 

dataset and takes the average to improve the predictive accuracy of the dataset. 

• Decision Tree Classifier 

Amongst the most popular machine learning algorithms given their intelligibility 

and simplicity. Classification trees are tree models where the target variable can 

take a discrete set of values. In these trees, leaves represent class labels and 

branches represent conjunctions of features that lead to those class labels. 

• XGBoost Classifier (eXtreme Gradient Boosting) 

Open-source software library which provides a regularizing gradient boosting 

framework. It offers amongst other a clever penalization of trees and a 

proportional shrinking of leaf nodes, and it has gained much popularity recently 

as the choice algorithm of many winning teams of machine learning 

competitions. 

In order to achieve the best possible trained model with the limited data sample created 

by the Annotation Tool (Section 3.1), cross-validation was used during the training of each 

method. The general procedure of a k-fold cross-validation is as follows: 

1. Shuffle the dataset randomly 

2. Split the dataset into k groups 

3. For each group: 

• Take the group as a hold out or test data set 

• Take the remaining groups as a training data set 
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• Fit a model on the training data set and evaluate it on the test set 

• Retain the evaluation score and discard the model 

4. Summarize the skill of the model using the sample of model evaluation scores 

Each observation in the data sample is assigned to an individual group and stays in that 

group for the duration of the procedure. This means that each sample is given the 

opportunity to be used in the hold out set 1 time and used to train the model k-1 times. 

Hyperparameter optimization or tuning is another way to ensure that the model can 

optimally solve the machine learning problem. The same kind of machine learning model 

can require different constrains, weights or learning rates to generalize different data 

patterns. Hyperparameter optimization finds a tuple of hyperparameters that yields an 

optimal model which minimizes a predefined loss function on given independent data. The 

objective function takes a tuple of hyperparameters and returns the associated loss. To 

estimate this generalization performance, cross-validation was used.  

After the training process with the annotated dataset, Crisis Classification is able to identify 

and save the best performing model for a specific Space Ground Segment, choosing the 

most optimal hyperparameters. To compare the best versions of each algorithm, 

predictions are made on the test data and results such as F1-score and accuracy are taken 

into account. 

3.2.2.2. Experimental evaluation process 

As mentioned in the paragraph above, Crisis Classification module needs to evaluate the 

training results. After the cross-validation of each different machine learning algorithm and 

the Hyperparameter tuning, we need to select the best fitting method and the best version 

of that particular algorithm.  

When performing classification predictions, there are four types of outcomes that could 

occur: 

• True positives (TP) are when you predict an observation belongs to a class and it 

actually does belong to that class. 

• True negatives (TN) are when you predict an observation does not belong to a class 

and it actually does not belong to that class. 

• False positives (FP) occur when you predict an observation belongs to a class when 

in reality it does not. 

• False negatives (FN) occur when you predict an observation does not belong to a 

class when in fact it does. 

These four outcomes are plotted on a confusion matrix. A paradigm can be seen bellow 

(Figure 3-7).  
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Figure 3-7 - Confusion Matrix example 

The tree main metrics used to evaluate a classification model are accuracy, precision and 

recall. We also calculate and keep track of a 4th metric, F1 score4.  

• Accuracy is defined as the percentage of correct predictions for the test data. It can 

be calculated easily by dividing the number of correct predictions by the number of 

total predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
	 

• Precision is defined as the fraction of relevant examples (true positives) among all 

of the examples which were predicted to belong in a certain class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall is defined as the fraction of examples which were predicted to belong to a 

class with respect to all of the examples that truly belong in the class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1 Score is defined as the harmonic mean of Precision and Recall. In order to 

calculate F1 Score we compute the average of precision and recall. Since it is the 

average, it means that it gives equal weight to Precision and Recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

Through these metrics we are able to compare the performance of each machine learning 

algorithm, with each different set of parameters, for each pilot site and attack category 

(Cyber, Physical). In the end, the trained model with the best performance is serialized with 

Pickle and is saved in order to be used for severity prediction when an event is taking place 

in real time.  

 
4 https://www.sciencedirect.com/topics/engineering/confusion-matrix 
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Pickle is a module that implements binary protocols for serializing and de-serializing a 

Python object structure. When “pickling” a Python object hierarchy, it is converted into a 

byte stream. The inverse operation, “unpickling”, is when the byte stream is converted back 

into an object hierarchy. 

3.2.3. Decision Fusion Module 

The Decision Fusion module is responsible to fuse the results of the Information Fusion 

module along with information originated from other modules of the Situational Picture 

layer or Service layer. Specifically, the assessments of the severity level for evolving crisis 

events will be enriched with information related to the vulnerabilities of the assets that are 

exposed to those attacks. For example, the data centre of a SGS is a critical area, hence 

the presence of an intruder there will be an extreme severity event. Hence, this module 

compiles specific user-defined rules in order to enrich the decisions generated by the 

Information Fusion module and increase the final severity level.  

Furthermore, in the case that complex physical and cyber-attacks take place the CRCL 

should be able to classify those hybrid events in terms of their severity levels. As those 

malicious events have been correlated and encompassed in the same situational picture, 

thus the CRCL should provide the updated severity level for the whole situation. On the 

other hand, the Information Fusion module handles physical or cyber events separately, by 

producing different classifications of the severity level for each event. 

Moreover, in the framework of the 7SHIELD project, the proper operation and availability 

of the sensors and hardware devices are monitoring via the Availability Detection 

Monitoring (ADM) module. The malfunction of them should be detected and early notified 

and has an impact to the overall estimation of the situational picture. Therefore, in the CRCL 

module the following empirical rule is utilised in order to assess the severity level caused 

by those events: 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	(𝐴𝑣) = 	 > 𝐿𝑜𝑤,			𝑖𝑓	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑈𝑝
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,			𝑖𝑓	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑆𝑡𝑎𝑡𝑢𝑠 = 𝐷𝑜𝑤𝑛 

Hence, the Decision Fusion module should be capable of ensemble these decisions for 

severity level and provide a unified one, the overall Severity Level (Figure 3-8). A simple 

way to implement this process is to apply the rule of the maximum value: 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝐿𝑒𝑣𝑒𝑙 = 𝑚𝑎𝑥{𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	(𝑃ℎ𝑦), 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	(𝐶𝑦), 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	(𝐴𝑣)} 
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Figure 3-8 – Interaction between Information Fusion and Decision Fusion modules 

3.2.4. Deployment and Interaction with Other Modules 

Crisis Classification (CRCL) is connected with the rest of 7SHIELD modules through Apache 

Kafka. Kafka is a distributed event store and stream-processing platform, and aims to 

provide a unified, high-throughput, low-latency handling of real-time data feeds.  

7SHIELD uses physical and cyber correlators in order to compare and group all the 

information that the detectors are providing when an event is taking place. Crisis 

Classification gets all the correlated data in real time through the Situational Picture 

Generation and Update module (SPGU). Using that input, CRCL calculates the severity level 

of the current situation, and it produces an output, in order for the Integrated C3 System 

to be updated. 
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4. Experimental Evaluations 

4.1. End-User’s Feedback for the Annotation Process 

With the help of the Annotation Tool web application mentioned above, the experts for 

each space ground segment managed to annotate a variety of cyber and physical events. 

Those events were randomly generated hypothetical attack scenarios that were created 

through the back-end layer of the Annotation Tool. A total of 1088 cyber events and 762 

physical events were annotated by the end users. In order to evaluate the annotated data, 

we generated multiple graphs that quantify the quality and the range of each dataset.  

 
Figure 4-1 - Cyber scenarios distribution per attack type and severity level 

In the above graph the main type of each cyber event that was annotated can be seen, 

along with the severity level that was assigned to that event by the end users. Some types 

of cyber-attacks or events lean towards the lower or the higher end of the severity level, as 

expected. For example, a lot of DDoS (Denial of Service) attacks were characterized with 

high or extreme severity where the “log in out of work time” type of event is less severe 

overall. Of course, there were also other factors involved as the time that the event was 

taking place and the asset it was targeted. Below, we can see the same type of graph 

generated for the physical events. 
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Figure 4-2 - Physical scenarios distribution per detected item type and severity level 

In this graph, the physical items that can be detected and identified by the 7SHIELD 

detectors can be seen, as well as the frequency each one was present in the random 

generated events. The severity level of the scenarios that involved one or more of those 

items is also assigned to each category.  

For each space ground segment, according to the needs of the project, either physical, 

cyber or both types of events were annotated. The total scenarios that were characterized 

for each pilot site according to the event type are: 

• NOA (281 physical, 230 cyber) 

• DEIMOS (301 physical, 458 cyber) 

• FMI (202 physical) 

• SPACEAPPS (200 cyber) 

• SERCO (200 cyber) 

4.2. Crisis Classification Experimental Results 

Using the annotated datasets for each pilot site it was possible to train and test various 

machine learning models. The cross-validation method k-fold was deployed in order to 

estimate the skill of each machine learning model, as well as the best set of parameters. It 

should be noted that a quite exhausted fine-tuning of the parameters for each machine 

learning technique had been carried out.Bellow, the results for each one of the 5 different 

machine learning models over the best set of parameters when trained and tested with 

physical and cyber annotated datasets in a particular pilot site will be exhibited. Each model 

was measured in terms of Precision, Recall, F1 Score and Accuracy. The parameters that 
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can be seen for each model are the set with the highest Accuracy for that specific machine 

learning methodology.  

To better evaluate the results that the machine learning methods produce when applied to 

each pilot site, confusion matrixes are generated during the testing phase of the training 

session. The events used for testing are 20% of the total events that were used for the 

attack scenarios. The rest 80% was used for the training procedure. 

4.2.1. Experimental Results Over the NOA Pilot 

4.2.1.1. Physical attack scenarios 

The annotated dataset generated by 281 physical attack hypothetical scenarios divided 

into 80% (224) events that utilised for the classifiers training and the rest portion of them, 

20% (57) events for testing and evaluation purposes. In the following table (Table 4-1) the 

experimental results over the testing dataset per classifier are illustrated. The results that 

correspond to each classifier came out by using the best set of parameters that the 

particular classifier succeed in terms of Accuracy.  

 
Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

71.87% 78.85% 70.92% 78.84% 

SVM 
(kernel=”linear”, C=0.1, 
gamma=1, random_state=42) 

74.04% 80.77% 75.87% 80.76% 

RF 

(criterion=”gini”, 
max_depth=110, max_fea-
tures=”auto”, min_sam-
ples_leaf=10, min_sam-
ples_split=10, n_estima-
tors=100, random_state=42, 
bootstrap=True) 

60.92% 65.38% 62.92% 65.38% 

DT 
(criterion=”gini”, max_depth=1, 
max_leaf_nodes=2, min_sam-
ples_split=2, random_state=42) 

64.69% 67.31% 65.23% 67.31% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.01, max_depth=2, 
min_child_weight=10, n_estima-
tors=80, nthread=4, subsam-
ple=0.8) 

66.11% 71.15% 68.11% 71.15% 

Table 4-1– Performance of the ML Classifiers over NOA’s physical dataset 

Best performing algorithm for NOA pilot’s physical dataset is SVM with linear kernel, which 

its accuracy is approximately around 80.76%. Linear Regression classifier exhibits the 2nd 
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best performance among the classifiers in terms of the Accuracy and F1-score. Decision Trees 
and Random Forest exhibit quite poor performance in terms of the Accuracy (67.31% and 65.38% 

correspondingly) and F1-score (65.23% and 62.92% correspondingly). 

The confusion matrix for the best performing algorithm (SVM) in the NOA pilot’s physical 

dataset is illustrated in the Figure 4-3. The SVM classifier managed to classify correctly the 

majority of the hypothetical scenarios that present moderate severity levels. However, it 

fails to identify correctly the scenarios with the low severity levels. One potential 

explanation could be that the scenarios of those categories may be quite similar having 

very few differences, so it is difficult to classify them correctly even by humans. This 

conclusion is reinforced by observing the results of the other classifiers, at confusion 

matrices in Figure 4-4. 
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Figure 4-3 – SVM Confusion Matrix over NOA’s physical dataset 

 
(a) Linear Regression classifier 

 
(b) XGBoost classifier 

 
(c) Decision Tree classifier  

 
(d) Random Forest classifier 

Figure 4-4 – Confusion Matrices for classifiers (a) LR, (b) XGBoost, (c) DT and (d) RF over NOA physical attack scenarios 

4.2.1.2. Cyber-attack scenarios 

The 46 out of 230 annotated cyber scenarios have been utilised in order to evaluate the 

performance of the ML models. The results are illustrated in the following table (Table 4-2). 

The SVM with linear kernel has exhibited the best performance in terms of the accuracy and 

F1-Score upon the testing dataset. The Random Forest classifier had achieved the 2nd 

performance overcoming the linear regression classifier. The other 3 classifiers, namely 

Linear Regression, Decision Tree and XGBoost have quite equal performance. In the 

following figures, Figure 4-5 and Figure 4-6, the confusion matrix for the SVM and the other 

classifiers are presented. The classifiers managed to classify correctly the low severity events 

as well as the majority of the instances for each one of the severity levels. 

Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

86.64% 84.78% 84.23% 84.78% 

SVM 
(kernel=”linear”, C=0.1, 
gamma=1, random_state=42) 

90.02% 89.13% 88.54% 89.13% 
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RF 

(criterion=”gini”, 
max_depth=110, max_fea-
tures=”auto”, min_sam-
ples_leaf=10, min_sam-
ples_split=10, n_estima-
tors=100, random_state=42, 
bootstrap=True) 

88.27% 86.95% 86.42% 86.95% 

DT 
(criterion=”gini”, max_depth=1, 
max_leaf_nodes=2, min_sam-
ples_split=2, random_state=42) 

86.64% 84.78% 84.22% 84.78% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.01, max_depth=2, 
min_child_weight=10, n_estima-
tors=80, nthread=4, subsam-
ple=0.8) 

86.64% 84.78% 84.22% 84.78% 

Table 4-2– Performance of the ML Classifiers over NOA’s cyber dataset 

 
Figure 4-5 – SVM Confusion Matrix over NOA’s cyber dataset 
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(a) Random Forest classifier 

 

 
(b) Linear Regression classifier 

 
(c) Decision Tree classifier  

 
(d) XGBoost classifier 

Figure 4-6 – Confusion Matrices for classifiers (a) RF, (b) LR, (c) DT and (d) XGBoost over NOA cyber-attack scenarios 

4.2.2. Experimental Results Over the DEIMOS Pilot 

4.2.2.1. Physical attack scenarios 

The annotated dataset consists of 301 physical attack hypothetical scenarios divided into 

80% (240) events that utilised for the classifiers training and the rest portion of them, 20% 

(61) events for testing and evaluation purposes. Decision Tree classifier along with Linear 

Regression exhibit the two highest accuracy rates reaching 60% and 55% correspondingly. 

The difficulties that appear to classifiers to correctly classify the attack events in terms of 

their severity level are depicted in the confusion matrices of the classifiers  

Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=0.1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

51.19% 58.33% 49.97% 58.33% 

SVM 
(kernel=”linear”, C=1, 
gamma=1, random_state=42) 

44.34% 48.33% 45.98% 48.33% 
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RF 

(criterion=”gini”, 
max_depth=40, max_fea-
tures=”auto”, min_sam-
ples_leaf=2, min_sam-
ples_split=2, n_estimators=100, 
random_state=42, boot-
strap=True) 

51.20% 55.00% 52.64% 55.00% 

DT 
(criterion=”gini”, max_depth=1, 
max_leaf_nodes=2, min_sam-
ples_split=2, random_state=42) 

44.22% 60.00% 50.71% 60.00% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.05, max_depth=2, 
min_child_weight=1, n_estima-
tors=50, nthread=4, subsam-
ple=0.8) 

39.26% 50.00% 43.97% 50.00% 

Table 4-3– Performance of the ML Classifiers over DEIMOS’s physical dataset 

 
Figure 4-7 – Decision Tree Confusion Matrix over DEIMOS’s physical dataset 
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(a) Linear Regression classifier 

 
(b) Random Forest classifier 

 
(c) XGBoost classifier 

 
(d) SVM classifier 

Figure 4-8 – Confusion Matrices for classifiers (a) LR, (b) RF, (c) XGBoost and (d) SVM over DEIMOS physical attack scenarios 

4.2.2.2. Cyber attack scenarios 

The 458 characterised physical attack scenarios have been divided into a training set that 

contains 366 entries and a testing set which includes 92 scenarios. In the following table 

(Table 4-4) the performance of each classifier has been illustrated. Although the Decision 

Tree is the best performance classifier in terms of the achieved accuracy (~70.65%), 

however, the other classifiers exhibit similar performance too (~69.56%).  

Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=0.1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

69.41% 69.56% 66.63% 69.56% 

SVM 
(kernel=”linear”, C=1, 
gamma=1, random_state=42) 

72.52% 69.56% 67.00% 69.56% 
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RF 

(criterion=”gini”, 
max_depth=40, max_fea-
tures=”auto”, min_sam-
ples_leaf=2, min_sam-
ples_split=2, n_estimators=100, 
random_state=42, boot-
strap=True) 

72.52% 69.56% 67.00% 69.56% 

DT 
(criterion=”gini”, max_depth=1, 
max_leaf_nodes=2, min_sam-
ples_split=2, random_state=42) 

71.17% 70.65% 67.59% 70.65% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.05, max_depth=2, 
min_child_weight=1, n_estima-
tors=50, nthread=4, subsam-
ple=0.8) 

69.40% 69.56% 66.63% 69.56% 

Table 4-4– Performance of the ML Classifiers over DEIMOS’s cyber dataset 

From the confusion matrices (Figure 4-9 and Figure 4-10), we can conclude that the DT 

classifier attained classify correctly the majority of the events with the High severity level, 

while it has not achieved to classify the scenarios with a moderate severity level. 

 
Figure 4-9- Decision Tree Confusion Matrix over DEIMOS’s cyber dataset  
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(a) Linear Regression classifier 

 
(b) Random Forest classifier 

 
(c) XGBoost classifier 

 
(d) SVM classifier 

Figure 4-10 – Confusion Matrices for classifiers (a) LR, (b) RF, (c) XGBoost and (d) SVM over DEIMOS cyber-attack scenarios 

4.2.3. Experimental Results Over the FMI Pilot 

In this series of experiments, only physical attack scenarios were annotated and analysed 

by ML algorithms. The dataset of 202 annotated hypothetical scenarios has been divided 

into 162 entries for training the models while the rest 40 entries to evaluate (test) the 

performance of the classifiers. Linear Regression and Random Forest classifiers exhibited 

the best performance around 61% and 58.5% correspondingly (Table 4-5). 

Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

54.08% 60.98% 57.28% 60.98% 

SVM 
(kernel=”linear”, C=1, 
gamma=1, random_state=42) 

45.85% 43.90% 44.79% 43.90% 
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RF 

(criterion=”gini”, 
max_depth=10, max_fea-
tures=”auto”, min_sam-
ples_leaf=2, min_sam-
ples_split=10, n_estima-
tors=500, random_state=42, 
bootstrap=True) 

51.43% 58.54% 54.75% 58.53% 

DT 

(criterion=”entropy”, 
max_depth=20, 
max_leaf_nodes=34, min_sam-
ples_split=3, random_state=42) 

48.64% 36.59% 39.69% 36.59% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.01, max_depth=2, 
min_child_weight=1, n_estima-
tors=50, nthread=4, subsam-
ple=0.8) 

37.94% 46.34% 40.93% 46.34% 

Table 4-5– Performance of the ML Classifiers over FMI’s physical attack dataset 

In Figure 4-11 the LR confusion matrix is presented. The majority of the attack scenarios 

that have moderate and high severity levels have been classified correctly. The RF, XGBoost 

and SVM have been achieved to classify the majority of the scenarios with moderate severity 

level correctly. However, the classifiers’ behaviour has been altered and only the SVM 

classifier managed to classify correctly the scenarios with high severity level (Figure 4-12). 

DT classifier managed to classify correctly scenarios of high severity levels while it does not 

succeed in moderate scenarios. 

 

 
Figure 4-11- LR Confusion Matrix over FMI’s physical dataset  
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(a) Random Forest classifier 

 
(b) XGBoost classifier 

 
(c) SVM classifier 

 
(d) Decision Tree classifier 

Figure 4-12 – Confusion Matrices for classifiers (a) Random Forest, (b) XGBoost, (c) SVM and (d) DT over FMI physical attack 
scenarios 

4.2.4. Experimental Results Over the SPACEAPPS Pilot 

In this series of experiments, only cyber-attack scenarios were annotated and analysed by 

ML algorithms. The dataset of 200 annotated hypothetical scenarios has been divided into 

160 entries for training the models while the rest 40 entries to evaluate (test) the 

performance of the classifiers. Linear Regression, Random Forest and Decision Tree 

classifiers exhibited the best performance around 95% (Table 4-6). Also, the performance 

of the SVM is high above 87%.  

 
Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

95.43% 95.00% 94.97% 95.00% 

SVM 
(kernel=”linear”, C=1, 
gamma=1, random_state=42) 

94.75% 87.50% 90.95% 87.50% 
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RF 

(criterion=”gini”, 
max_depth=10, max_fea-
tures=”auto”, min_sam-
ples_leaf=2, min_sam-
ples_split=10, n_estima-
tors=500, random_state=42, 
bootstrap=True) 

95.43% 95.00% 94.97% 95.00% 

DT 

(criterion=”entropy”, 
max_depth=20, 
max_leaf_nodes=34, min_sam-
ples_split=3, random_state=42) 

95.43% 95.00% 94.97% 95.00% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.01, max_depth=2, 
min_child_weight=1, n_estima-
tors=50, nthread=4, subsam-
ple=0.8) 

81.95% 72.50% 69.75% 72.50% 

Table 4-6– Performance of the ML Classifiers over SpaceAPPS’s cyber-attack dataset 

The classifiers, apart from the XGBoost, had identified correctly the attack scenarios which 

have moderate severity level. Similar all the classifiers have managed to classify scenarios 

with high severity level (Figure 4-13 and Figure 4-14).  

 

 
Figure 4-13- Linear Regression Confusion Matrix over SpaceAPPs’ cyber dataset  
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(a) DT classifier 

 
(b) RF classifier 

 

 
(c) SVM classifier 

 

 
(d) XGBoost classifier  

Figure 4-14 – Confusion Matrices for classifiers (a) DT, (b) RF, (c) SVM and (d) XGBoost over SpaceAPPS cyber-attack 
scenarios 

4.2.5. Experimental Results Over the SERCO Pilot 

In this series of experiments, only cyber-attack scenarios were annotated and analysed by 

ML algorithms. The dataset of 200 annotated hypothetical scenarios has been divided into 

160 entries for training the models while the rest 40 entries to evaluate (test) the 

performance of the classifiers. Linear Regression, Random Forest and Decision Tree 

classifiers exhibited the best performance around 95% (Table 4-7). Also, the performance 

of the SVM is high, slightly above 87%. XGBoost follows with a 72.5% accuracy. 

Classifier Best set of parameters Precision Recall F1 Score Accuracy 

LR (Ridge)  
(alpha=1, normalize=True, 
tol=0.001, solver=”auto”, ran-
dom_state=42) 

92.62% 95.00% 93.78% 95.00% 

SVM 
(C=0.1, gamma=1, kernel='line-
ar', random_state=42) 

92.62% 95.00% 93.78% 95.00% 
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RF 

(criterion=”gini”, 
max_depth=10, max_fea-
tures=”auto”, min_sam-
ples_leaf=2, min_sam-
ples_split=10, n_estima-
tors=500, random_state=42, 
bootstrap=True) 

92.62% 95.00% 93.78% 95.00% 

DT 

(criterion=”entropy”, 
max_depth=20, 
max_leaf_nodes=34, min_sam-
ples_split=3, random_state=42) 

92.62% 95.00% 72.57% 95.00% 

XGBoost 

(colsample_bytree=0.7, learn-
ing_rate=0.01, max_depth=2, 
min_child_weight=1, n_estima-
tors=50, nthread=4, subsam-
ple=0.8) 

62.93% 72.50% 65.60% 72.50% 

Table 4-7– Performance of the ML Classifiers over Serco’s cyber-attack dataset 

Linear Regression, SVM, Decision Tree and Random Forest classifiers exhibit similar 

behaviour in terms of their performance. They can correctly identify most of the low, 

moderate and high severity attack scenarios. Last, XGBoost, while predicting most of the 

moderate and high severity attacks correctly, failed to identify a number of low and high 

severity scenarios (Figure 4-15 and Figure 4-16).  

 

 
Figure 4-15- Linear Regression Confusion Matrix over Serco’s cyber dataset  
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(a) Decision Tree classifier 

 
(b) Random Forest classifier 

 

(c) SVM classifier 
 

(d) XGBoost classifier 

Figure 4-16 – Confusion Matrices for classifiers (a) DT, (b) RF, (c) SVM and (d) XGBoost over Serco cyber-attack scenarios 
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5. Conclusions and Future Outlook 

In the present deliverable, we detailed the Security Risk Assessment framework that enables 

the dynamical estimation of the severity level of physical, cyber and complex malicious 

events that take place in Ground Segments of Satellite assets. The framework consists of 

two major components, namely the Information Fusion module and the Decision Fusion 

module. The former utilises machine learning approaches to analyse the correlated 

physical, cyber and hybrid events. The latter receives the assessments of the severity level 

from the previous analysis and updates the situational picture dynamically. For the training 

of the machine learning models require the utilisation of annotated datasets that contain 

classified P/C events in terms of the level of severity. For this purpose, the involvement of 

the experts and operators of the domain of the Satellite Ground Segments was requested. 

To facilitate this process a dedicated web-based tool, called Annotation Tool, was created 

and deployed to end-users. Then, machine learning methods were applied to the 

annotated datasets and evaluated against well-known validation measures. The best ML 

models were chosen, so as to create a suite of tools per pilot site and type of event (physical 

or cyber), which is enabled to classify "unknown" events. Furthermore, in the next level 

(decision fusion) the severity level estimations can be further enhanced based on specific 

rulesets formed by experts and combined so as to provide the overall severity assessment 

for complex threatening events.  

In general, from the analysis of the experimental results, we can conclude that the proposed 

framework is quite robust. During the operational test on NOA premises, its application can 

be judged as reliable providing real-time assessments covering the operators’ 

specifications. The proposed framework will further evaluate during the operational and 

demo tests in the various pilot sites at the 7SHIELD project. 

However, some limitations have been identified concerning its performance. Specifically, 

the training of the machine learning models depends on the adequate annotated datasets. 

Hence, the diversity of the datasets that cover various complex instances is a crucial driver 

to improve the performance of the training. Also, sophisticated ensemble machine learning 

methods can be applied to exploit the benefits of independent classifiers. 
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